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Figure 1: The sensitivity of the IsoDAR experiment [1]
to ν̄e disappearance in a five-year run. The sensitivities for
both rate+energy shape (solid line) and shape-only (dashed
line) are shown. Other curves from Refs. [4, 5, 6, 7].

IsoDAR is a novel isotope decay-at-rest
source of ν̄e for Beyond Standard Model
searches. The source [1] consists of an accelera-
tor producing 60 MeV protons [2] that impinge
on a 9Be target, producing neutrons. These en-
ter a 99.99% isotopically pure 7Li sleeve, where
neutron capture results in 8Li; this suffers β
decay at rest to produce an isotropic ν̄e flux
with an average energy of ∼6.5 MeV and an
endpoint of ∼13 MeV. The ν̄e will interact in
a scintillator detector via inverse beta decay
(IBD), ν̄e + p→ e+ + n, which is easily tagged
through prompt-light–neutron-capture coinci-
dence. When paired with KamLAND [3], the
experiment can observe 8.2× 105 reconstructed
IBD events in five years. With this data set, Iso-
DAR will decisively test sterile neutrino oscil-
lation models, allow precision measurement of
ν̄e-e scattering, and search for production and

decay of exotic particles.
The sterile neutrino search uses electron flavor disappearance, interpreted within models with

three active and one (3+1) or more sterile neutrino flavors [8, 9, 10, 11]. These models result from
fits to combined appearance (muon-to-electron flavor [12, 13, 14]) and disappearance (muon flavor
[15, 16, 17] and electron flavor [4, 5, 18]) data. Fig. 1 presents the oscillation landscape at 95%
confidence level for electron flavor disappearance in a 3+1 model. IsoDAR covers the global fit
allowed region for ν̄e disappearance [8] (dark grey) at 5σ in four months. The high statistics of
the five-year run distinguish models with one or more sterile neutrinos, as shown in Fig. 2. The
impressive capability of IsoDAR led to its choice as a Physical Review Letters highlight [19].

The timescale for this experiment is ∼2016 and cost is ∼ $30M. Our accelerator is comparable in
cost to those in a recent DOE study on cyclotrons [20]. Application to medical isotope production
[21] has led to interest from cyclotron companies in supporting development of our accelerator
[22, 23, 24]. For a comparison of cost-effectiveness to other technologies, see Ref. [25].
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(3+1) Model with !m2 = 1.0 eV2 and sin22"=0.1
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Figure 2: The L/E dependence of two example oscillation signatures after five years of IsoDAR running [1]. The
solid curve is the oscillation probability with no smearing in the reconstructed position and energy. The 3+2 example
(right) represents oscillations with the global best fit 3+2 parameters from Ref. [9].
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